Self-supervised deep learning for joint 3D low-dose PET/CT image denoising

Comput Biol Med. 2023 Oct:165:107391. doi: 10.1016/j.compbiomed.2023.107391. Epub 2023 Aug 26.

Abstract

Deep learning (DL)-based denoising of low-dose positron emission tomography (LDPET) and low-dose computed tomography (LDCT) has been widely explored. However, previous methods have focused only on single modality denoising, neglecting the possibility of simultaneously denoising LDPET and LDCT using only one neural network, i.e., joint LDPET/LDCT denoising. Moreover, DL-based denoising methods generally require plenty of well-aligned LD-normal-dose (LD-ND) sample pairs, which can be difficult to obtain. To this end, we propose a self-supervised two-stage training framework named MAsk-then-Cycle (MAC), to achieve self-supervised joint LDPET/LDCT denoising. The first stage of MAC is masked autoencoder (MAE)-based pre-training and the second stage is self-supervised denoising training. Specifically, we propose a self-supervised denoising strategy named cycle self-recombination (CSR), which enables denoising without well-aligned sample pairs. Unlike other methods that treat noise as a homogeneous whole, CSR disentangles noise into signal-dependent and independent noises. This is more in line with the actual imaging process and allows for flexible recombination of noises and signals to generate new samples. These new samples contain implicit constraints that can improve the network's denoising ability. Based on these constraints, we design multiple loss functions to enable self-supervised training. Then we design a CSR-based denoising network to achieve joint 3D LDPET/LDCT denoising. Existing self-supervised methods generally lack pixel-level constraints on networks, which can easily lead to additional artifacts. Before denoising training, we perform MAE-based pre-training to indirectly impose pixel-level constraints on networks. Experiments on an LDPET/LDCT dataset demonstrate its superiority over existing methods. Our method is the first self-supervised joint LDPET/LDCT denoising method. It does not require any prior assumptions and is therefore more robust.

Keywords: 3D PET/CT denoising; Deep learning; Low-dose PET/CT image; Self-supervised learning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artifacts
  • Deep Learning*
  • Positron Emission Tomography Computed Tomography*
  • Positron-Emission Tomography
  • Tomography, X-Ray Computed