Alzheimer's disease and amnestic mild cognitive impairment are associated with disrupted functional organization in brain networks, involved with alteration of functional segregation. Connectome gradients are a new tool representing brain functional topological organization to smoothly capture the human macroscale hierarchy. Here, we examined altered topological organization in amnestic mild cognitive impairment and Alzheimer's disease by connectome gradient mapping. We further quantified functional segregation by gradient dispersion. Then, we systematically compared the alterations observed in amnestic mild cognitive impairment and Alzheimer's disease patients with those in normal controls in a two-dimensional functional gradient space from both the whole-brain level and module level. Compared with normal controls, the first gradient, which described the neocortical hierarchy from unimodal to transmodal regions, showed a more distributed and significant suppression in Alzheimer's disease than amnestic mild cognitive impairment patients. Furthermore, gradient dispersion showed significant decreases in Alzheimer's disease at both the global level and module level, whereas this alteration was limited only to limbic areas in amnestic mild cognitive impairment. Notably, we demonstrated that suppressed gradient dispersion in amnestic mild cognitive impairment and Alzheimer's disease was associated with cognitive scores. These findings provide new evidence for altered brain hierarchy in amnestic mild cognitive impairment and Alzheimer's disease, which strengthens our understanding of the progressive mechanism of cognitive decline.
Keywords: Alzheimer’s disease; amnestic mild cognitive impairment; functional gradient; functional segregation.
© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected].