Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Keywords: Caenorhabditis elegans; aging; cell signaling; cuticle; extracellular matrix.