Objective: Aging is a complex process of physiological dysregulation of the body system and is common in hemodialysis patients. However, limited studies have investigated the links between dialysis vintage, calcium, phosphorus, and iPTH control and aging. The purpose of the current study was to examine these associations.
Methods: During 2020, a cross-sectional study was conducted in 3025 hemodialysis patients from 27 centers in Anhui Province, China. Biological age was calculated by a formula using chronological age and clinical indicators. The absence of the target range for serum phosphorus (0.87-1.45 mmol/L), corrected calcium (2.1-2.5 mmol/L) and iPTH (130-585 pg/mL) were identified as abnormal calcium, phosphorus, and iPTH control.
Results: A total of 1131 hemodialysis patients were included, 59.2% of whom were males (669/1131). The mean (standard deviation) of actual age and biological age were 56.07 (12.79) years and 66.94 (25.88), respectively. The median of dialysis vintage was 4.3 years. After adjusting for the confounders, linear regression models showed patients with abnormal calcium, phosphorus, and iPTH control and on hemodialysis for less than 4.3 years (B = 0.211, p = .002) or on hemodialysis for 4.3 years or more (B = 0.302, p < .001), patients with normal calcium, phosphorus, and iPTH control and on hemodialysis for 4.3 years or more (B = 0.087, p = .013) had a higher biological age.
Conclusion: Our findings support the hypothesis that long-term hemodialysis and abnormal calcium, phosphorus, and iPTH control may accelerate aging in the hemodialysis population. Further studies are warrant to verify the significance of maintaining normal calcium-phosphorus metabolism in aging.
Keywords: Ageing; biological age; calcium-phosphorus metabolism; hemodialysis.