Meropenem-vaborbactam restoration of first-line drug efficacy and comparison of meropenem-vaborbactam-moxifloxacin versus BPaL MDR-TB regimen

Int J Antimicrob Agents. 2023 Dec;62(6):106968. doi: 10.1016/j.ijantimicag.2023.106968. Epub 2023 Sep 17.

Abstract

Background: Meropenem in combination with β-lactamase inhibitors (BLIs) and other drugs was tested to identify alternative treatment regimens for multidrug-resistant tuberculosis (MDR-TB).

Methods: The following were performed: (1) MIC experiments; (2) static time-kill studies (STKs) with different BLIs; and (3) a hollow fibre model system of TB (HFS-TB) studies with meropenem-vaborbactam combined with human equivalent daily doses of 20 mg/kg or 35 mg/kg rifampin, or moxifloxacin 400 mg, or linezolid 600 mg vs. bedaquiline-pretonamid-linezolid (BPaL) for MDR-TB. The studies were performed using Mycobacterium tuberculosis (M. tuberculosis) H37Rv and an MDR-TB clinical strain (named M. tuberculosis 16D) that underwent whole genome sequencing. Exponential decline models were used to calculate the kill rate constant (K) of different HFS-TB regimens.

Results: Whole genome sequencing revealed mutations associated with resistance to rifampin, isoniazid, and cephalosporins. The meropenem-vaborbactam MIC of M. tuberculosis was H37Rv 2 mg/L and > 128 mg/L for M. tuberculosis 16D. Relebactam and vaborbactam improved both the potency and efficacy of meropenem in STKs. Meropenem-vaborbactam alone failed to kill M. tuberculosis 16D but killed below day 0 burden when combined with isoniazid and rifampin, with the moxifloxacin combination being the most effective and outranking bedaquiline and pretomanid. In the HFS-TB, meropenem-vaborbactam-moxifloxacin and BPaL had the highest K (log10 cfu/mL/day) of 0.31 (95% CI 0.17-0.58) and 0.34 (95% CI 0.21-0.56), while meropenem-vaborbactam-rifampin (35 mg/kg) had a K of 0.18 (95% CI 0.12-0.25). The K for meropenem-vaborbactam-moxifloxacin-linezolid demonstrated antagonism.

Conclusion: Adding meropenem-vaborbactam could potentially restore the efficacy of isoniazid and rifampin against MDR-TB. The meropenem-vaborbactam-moxifloxacin backbone regimen has implications for creating a new effective MDR-TB regimen.

Keywords: BPaL; Beta-lactams; Hollow fiber model system; Multidrug-resistant tuberculosis; Pharmacokinetics/pharmacodynamics.

MeSH terms

  • Antitubercular Agents / pharmacology
  • Antitubercular Agents / therapeutic use
  • Humans
  • Isoniazid / pharmacology
  • Linezolid / pharmacology
  • Linezolid / therapeutic use
  • Meropenem / pharmacology
  • Meropenem / therapeutic use
  • Moxifloxacin / pharmacology
  • Mycobacterium tuberculosis*
  • Rifampin / pharmacology
  • Rifampin / therapeutic use
  • Tuberculosis, Multidrug-Resistant* / drug therapy
  • Tuberculosis, Multidrug-Resistant* / microbiology
  • beta-Lactamase Inhibitors / therapeutic use

Substances

  • Moxifloxacin
  • Linezolid
  • Meropenem
  • bedaquiline
  • Antitubercular Agents
  • vaborbactam
  • Rifampin
  • Isoniazid
  • beta-Lactamase Inhibitors