Rationale and objectives: To assess the diagnostic performance of quantitative parameters from dual-energy CT (DECT) in differentiating parotid gland tumors (PGTs).
Materials and methods: 101 patients with 108 pathologically proved PGTs were enrolled and classified into four groups: pleomorphic adenomas (PAs), warthin tumors (WTs), other benign tumors (OBTs), and malignant tumors (MTs). Conventional CT attenuation and DECT quantitative parameters, including iodine concentration (IC), normalized iodine concentration (NIC), effective atomic number (Zeff), electron density (Rho), double energy index (DEI), and the slope of the spectral Hounsfield unit curve (λHU), were obtained and compared between benign tumors (BTs) and MTs, and further compared among the four subgroups. Logistic regression analysis was used to assess the independent parameters and the receiver operating characteristic (ROC) curves were used to analyze the diagnostic performance.
Results: Attenuation, Zeff, DEI, IC, NIC, and λHU in the arterial phase (AP) and venous phase (VP) were higher in MTs than in BTs (p < 0.001-0.047). λHU in VP and Zeff in AP were independent predictors with an area under the curve (AUC) of 0.84 after the combination. Furthermore, attenuation, Zeff, DEI, IC, NIC, and λHU in the AP and VP of MTs were higher than those of PAs (p < 0.001-0.047). Zeff and NIC in AP and λHU in VP were independent predictors with an AUC of 0.93 after the combination. Attenuation and Rho in the precontrast phase; attenuation, Rho, Zeff, DEI, IC, NIC, and λHU in AP; and the Rho in the VP of PAs were lower than those of WTs (p < 0.001-0.03). Rho in the precontrast phase and attenuation in AP were independent predictors with an AUC of 0.89 after the combination. MTs demonstrated higher Zeff, DEI, IC, NIC, and λHU in VP and lower Rho in the precontrast phase compared with WTs (p < 0.001-0.04); but no independent predictors were found.
Conclusion: DECT quantitative parameters can help to differentiate PGTs.
Keywords: Diagnosis; Dual-energy computed tomography; Parotid gland; Parotid neoplasms.
Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.