The establishment of facile synthetic routes to engineer covalent organic frameworks (COFs) with fully conjugated structure and excellent stability is highly desired for practical applications in optoelectronics and photocatalysis. Herein, a novel linkage conversion strategy is reported to prepare crystalline thiadiazole-linked COFs via thionation, cyclization, and oxidation of N-acylhydrazole bonds with Lawesson's reagent (LR). The as-prepared thiadiazole-linked COFs not only remain porosity and crystallinity, but enhance its chemical stability. Furthermore, thiadiazole-linked COFs are more favorable to lower exciton binding energy and promote π-electron delocalization over the whole reticular framework than N-acylhydrazone-linked COFs. Notably, the extended π-conjugation structure and decent crystallinity of the resulting TDA-COF are reflected by its higher photocatalytic H2 evolution rate (61.3 mmol g-1 in 5 h) in comparison with that (7.5 mmol g-1 ) of NAH-COF.
Keywords: covalent organic frameworks; hydrogen evolution reaction (HER); linkage conversions; photocatalysis; thiadiazole.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.