Molecular indicators of long-term survival (LTS) in response to immune-checkpoint inhibitor (ICI) treatment have the potential to provide both mechanistic and therapeutic insights. In this study, we construct predictive models of LTS following ICI therapy based on data from 158 clinical trials involving 21,023 patients of 25 cancer types with available 1-year overall survival (OS) rates. We present evidence for the use of 1-year OS rate as a surrogate for LTS. Based on these and corresponding TCGA multi-omics data, total neoantigen, metabolism score, CD8+ T cell, and MHC_score were identified as predictive biomarkers. These were integrated into a Gaussian process regression model that estimates "long-term survival predictive score of immunotherapy" (iLSPS). We found that iLSPS outperformed the predictive capabilities of individual biomarkers and successfully predicted LTS of patient groups with melanoma and lung cancer. Our study explores the feasibility of modeling LTS based on multi-omics indicators and machine-learning methods.
Keywords: CP: Cancer biology; CP: Systems biology; iLSPS; immune checkpoint inhibitor; immunotherapy; long-term survival; long-term survival predictive score of immunotherapy; machine learning; predictive analysis.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.