Tannic acid (TA) is hydrolysable tannin found in the leaves and bark of many herbaceous and woody plants. Purification of TA is important due to its antibacterial, antihistaminic, antioxidant, antimutagenic and antitussive properties. In this study, 2-hydroxyethyl methacrylate-based TA-imprinted particle embedded cryogel (TA-MIP) was synthesized to purify TA from pomegranate peel. Furthermore, non-imprinted particle embedded cryogel (NIP) was synthesized to determine specific adsorption properties of TA-MIP, and control cryogel was synthesized without embedding procedure. The synthesized cryogel columns were characterized via scanning electron microscopy, Brunauer-Emmett-Teller surface area analysis, fourier-transform infrared spectroscopy, and swelling studies. Particle-embedding procedure resulted in a significantly higher specific surface area of particle-embedded columns (TA-MIP and NIP, 29 m2/g and 25 m2/g, respectively) than the specific surface area of control cryogel (9 m2/g). Adsorption studies were performed from aqueous solutions and maximum TA adsorption was found to be 34.4 mg/g for TA-MIP, 3.9 mg/g for NIP, and 2.8 mg/g for control cryogel. Within the scope of selectivity study, it was demonstrated that the synthesized columns have a high selectivity for TA against gallic acid (GA) and quercetin (QCT). Finally, purification of TA directly from pomegranate peel extract was studied and results were confirmed by HPLC. Furthermore, it has been proven that TA-MIP cryogel columns can be repeatedly used up to ten-times without any remarkable reduction in the TA adsorption amount.
Keywords: Cryogel; Molecular imprinting; Pomegranate peel; Purification; Tannic acid.
Copyright © 2023 Elsevier B.V. All rights reserved.