Phthalates are widely distributed in our environment due to their usage in many industries, especially in plastic production, which has become an essential part of daily life. This investigation aimed to assess the potential remedial influence of lutein, a naturally occurring carotenoid, on phthalate-triggered damage to the liver and kidneys. When di-(2-ethylhexyl) phthalate (DEHP) was administered to male albino rats over sixty straight days at a dosage of 200 mg/kg body weight, it resulted in a significant increase in the serum activity of liver enzymes (AST, ALT, and GGT), alpha-fetoprotein, creatinine, and cystatin-C, as well as disruptions in the serum protein profile. In addition, intoxication with DEHP affected hepato-renal tissues' redox balance. It increased the content of some proinflammatory cytokines, nuclear factor kappa B (Nf-κB), and apoptotic marker (caspase-3); likewise, DEHP-induced toxicity and decreased the level of anti-apoptotic protein (Bcl-2) in these tissues. Lutein administration at a dose level of 40 mg/kg b.w efficiently facilitated the changes in serum biochemical constituents, hepato-renal oxidative disturbance, and inflammatory, apoptotic, and histopathological alterations induced by DEHP intoxication. In conclusion, it can be presumed that lutein is protective as a natural carotenoid against DEHP toxicity.
Keywords: Nf-κB; hepato-nephrotoxicity; lutein; phthalates; rats.