Ozonated Oil in Liposome Eyedrops Reduces the Formation of Biofilm, Selection of Antibiotic-Resistant Bacteria, and Adhesion of Bacteria to Human Corneal Cells

Int J Mol Sci. 2023 Sep 14;24(18):14078. doi: 10.3390/ijms241814078.

Abstract

The recent attention to the risk of potential permanent eye damage triggered by ocular infections has been leading to a deeper investigation of the current antimicrobials. An antimicrobial agent used in ophthalmology should possess the following characteristics: a broad antimicrobial spectrum, prompt action even in the presence of organic matter, and nontoxicity. The objective of this study is to compare the antimicrobial efficacy of widely used ophthalmic antiseptics containing povidone-iodine, chlorhexidine, and liposomes containing ozonated sunflower oil. We determined the minimum inhibitory concentration (MIC) on various microbial strains: Staphylococcus aureus (ATCC 6538), methicillin-resistant Staphylococcus aureus (ATCC 33591), Staphylococcus epidermidis (ATCC 12228), Pseudomonas aeruginosa (ATCC 9027), and Escherichia coli (ATCC 873). Furthermore, we assessed its efficacy in controlling antibiotic resistance, biofilm formation, and bacterial adhesion. All three antiseptic ophthalmic preparations showed significant anti-microbicidal and anti-biofilm activity, with the liposomes containing ozonated sunflower oil with the highest ability to control antibiotic resistance and bacteria adhesion to human corneal cells.

Keywords: antimicrobial agents; antiseptic; biofilm; chlorhexidine; liposomal ozonated oil; multidrug-resistant organisms; ophthalmology; povidone-iodine; toxicity.