Comparative Study on the Phytochemical Characterization and Biological Activities of Azolla caroliniana and Azolla filiculoides: In Vitro Study

Plants (Basel). 2023 Sep 11;12(18):3229. doi: 10.3390/plants12183229.

Abstract

Azolla is a floating fern known for its various biological activities. Azolla caroliniana and Azolla filiculoides are multifunctional plants that exhibit biological activity in multiple ways, making them beneficial for various applications. This study aimed to compare the phytochemical composition and antimicrobial, antioxidant, anti-inflammatory, and cytotoxicity activities of two Azolla species, namely Azolla caroliniana and Azolla filiculoides. GC-MS analysis revealed distinct patterns of phytochemical composition in the two species. The methanol extracts of A. caroliniana and A. filiculoides exhibited moderate antimicrobial activity against Geotrichum candidum, Enterococcus faecalis, and Klebsiella pneumonia. Furthermore, both extracts demonstrated potential antioxidant activity, as evidenced by a dose-dependent increase in a ferric-reducing activity power (FRAP) assay. Additionally, the extracts showed promising anti-inflammatory activities, including inhibition of protein denaturation, heat-induced red blood cell (RBC) hemolysis, and nitric oxide (NO) production by macrophages. Moreover, the methanolic extracts of A. caroliniana displayed higher cytotoxicity against HepG2 cells than those of A. filiculoides in a dose-dependent manner. These findings suggest that the methanolic extracts of A. caroliniana and A. filiculoides contain distinct compounds and exhibit potential antioxidant, anti-inflammatory, and cytotoxic activities against HepG2 cells. In conclusion, our data indicate that the methanolic extracts of A. caroliniana and A. filiculoides have differential phytochemical compositions and possess potential antioxidant, anti-inflammatory, and HepG2 cytotoxic activities.

Keywords: Azolla caroliniana; Azolla filiculoides; anti-inflammatory activity; antioxidant activity; cytotoxicity.

Grants and funding

We thank Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R73), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.