Sequential heterologous immunization with COVID-19 vaccines induces broader neutralizing responses against SARS-CoV-2 variants in comparison with homologous boosters

Vaccine. 2023 Oct 26;41(45):6645-6653. doi: 10.1016/j.vaccine.2023.09.030. Epub 2023 Sep 26.

Abstract

The recently prevalent variants of concerns (VOCs) of SARS-CoV-2 belong to Omicron variants which display increased transmissibility and evade from immune protection generated by vaccines and/or natural infections. Better immunization strategies should be explored to induce broader immune responses against evolving SARS-CoV-2 variants. Here, we used inactivated vaccines derived from ancestral (Wu), Delta (Del) and Omicron (Omi) strains to immunize mice with homologous booster (3 × Wu, 3 × Del and 3 × Omi) or heterologous sequential booster (Wu/Del/Omi and Omi/Wu/Del) to evaluate their responses against two pre-Omicron (Wu and Del) and four Omicron variants. Even though neutralization responses against Wu and Del variants were similar in heterologous and homologous immunization groups, heterologous immunization groups induced significantly stronger neutralizing antibody against BA.1 (4.1-11 folds higher) and BA.2 (4.7-14.2 folds higher) than those of homologous immunization groups. While homologous immunization only induced strong neutralizing responses to either pre-Omicron variants (Wu and Del) in 3 × Wu and 3 × Del groups or to Omicron variants (BA.1 and BA.2) in 3 × Omi group, heterologous immunization groups induced strong and broader neutralizing responses to both pre-Omicron (Wu, Del) and Omicron variants (BA.1 and BA.2). Homologous and heterologous immunization groups elicited similar antigen-specific T cell (IFN-γ+) and B cell responses. Compared with homologous immunization, heterologous immunization could induce stronger plasma cell responses, which have the potential to generate broader and stronger neutralizing antibodies. However, neither heterologous nor homologous immunization groups induced strong neutralizing antibody against variants with bigger genetic deviation, such as BA.4/5 or BF.7, only weak neutralizing responses were induced. Surveillance on SARS-CoV2 variants evolution and immunization strategy are needed to explore better vaccines with broader and stronger neutralizing antibodies against post pandemic COVID-19.

Keywords: Heterologous sequential immunization; Homologous boosters; Inactivated vaccines; Neutralizing antibody; Omicron variants; SARS-CoV-2 variants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19 Vaccines
  • COVID-19* / prevention & control
  • Humans
  • Immunization
  • Mice
  • RNA, Viral
  • SARS-CoV-2*

Substances

  • COVID-19 Vaccines
  • RNA, Viral
  • Antibodies, Neutralizing
  • Antibodies, Viral

Supplementary concepts

  • SARS-CoV-2 variants