Human immunodeficiency virus (HIV) infection is still an important public health problem, which justifies the research of new therapies to combat it. Recent studies show that Extracellular Traps (ETs) are cellular mechanisms useful in the capture and destruction of some viruses, such as the HIV. Here, we show that neutrophils from peripheral blood, genital tissues, and placenta are activated when exposed to human immunodeficiency virus type 1 (HIV-1) and release Neutrophil Extracellular Traps (NETs). The NETs can capture, neutralize, and inactivate the virus and, also, protect other target cells from HIV infection, as long as the DNA and other constituents of the NETs remain intact. Further, the review indicates that the immunoprotective role of NETs in the context of HIV-1 infection is a promising finding for the development of new antiviral therapies. It is necessary, however, the development of studies that evaluate the tissue injury that NETs can cause and the biological relationships with other cells to improve them as therapeutic targets.
Keywords: HIV; cell physiological phenomena; extracellular traps; immunity; neutrophil activation.