Aim: To predict antivascular endothelial growth factor (VEGF) treatment requirements, visual acuity and morphological outcomes in neovascular age-related macular degeneration (nAMD) using fluid quantification by artificial intelligence (AI) in a real-world cohort.
Methods: Spectral-domain optical coherence tomography data of 158 treatment-naïve patients with nAMD from the Fight Retinal Blindness! registry in Zurich were processed at baseline, and after initial treatment using intravitreal anti-VEGF to predict subsequent 1-year and 4-year outcomes. Intraretinal and subretinal fluid and pigment epithelial detachment volumes were segmented using a deep learning algorithm (Vienna Fluid Monitor, RetInSight, Vienna, Austria). A predictive machine learning model for future treatment requirements and morphological outcomes was built using the computed set of quantitative features.
Results: Two hundred and two eyes from 158 patients were evaluated. 107 eyes had a lower median (≤7) and 95 eyes had an upper median (≥8) number of injections in the first year, with a mean accuracy of prediction of 0.77 (95% CI 0.71 to 0.83) area under the curve (AUC). Best-corrected visual acuity at baseline was the most relevant predictive factor determining final visual outcomes after 1 year. Over 4 years, half of the eyes had progressed to macular atrophy (MA) with the model being able to distinguish MA from non-MA eyes with a mean AUC of 0.70 (95% CI 0.61 to 0.79). Prediction for subretinal fibrosis reached an AUC of 0.74 (95% CI 0.63 to 0.81).
Conclusions: The regulatory approved AI-based fluid monitoring allows clinicians to use automated algorithms in prospectively guided patient treatment in AMD. Furthermore, retinal fluid localisation and quantification can predict long-term morphological outcomes.
Keywords: Degeneration; Macula; Neovascularisation; Retina.
© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.