Protein drugs are a critically important therapeutic modality due to the sophisticated binding recognition, catalytic properties, and disease relevance of proteins. There is a clear need for new strategies able to improve pharmacokinetics, bioavailability, and/or intracellular delivery of therapeutic proteins, as stability limitations have significantly hindered clinical advancement, and most proteins are membrane impermeable. Bioconjugation strategies able to site-specifically modify proteins with cell binding, and other ligands offer a particularly valuable approach to facilitate protein delivery due to the importance of ligand presentation on protein bioactivity and cellular uptake. We explored unnatural amino acid (UAA) incorporation as a novel strategy to tunably incorporate clustered cell-binding ligands in fluorescent proteins and suicide enzymes, resulting in substantial increases in cell-specific uptake and targeted cell-killing activity. These approaches offer a valuable and versatile method to modify a variety of proteins and enable improved clinical potential.
Keywords: EGFR; Endosomolytic peptide; Prodrug; Synthetic biology; Unnatural amino acid (UAA).
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.