Intensification of livestock systems becomes essential to meet the food demand of the growing world population, but it is important to consider the environmental impact of these systems. To assess the potential of forage-based livestock systems to offset greenhouse gas (GHG) emissions, the net carbon (C) balance of four systems in the Brazilian Amazon Biome was estimated: livestock (L) with a monoculture of Marandu palisade grass [Brachiaria brizantha (Hochst. ex A. Rich.) R. D. Webster]; livestock-forestry (LF) with palisade grass intercropped with three rows of eucalyptus at 128 trees/ha; crop-livestock (CL) with soybeans and then corn + palisade grass, rotated with livestock every two years; and crop-livestock-forestry (CLF) with CL + one row of eucalyptus at 72 trees/ha. Over the four years studied, the systems with crops (CL and CLF) produced more human-edible protein than those without them (L and LF) (3010 vs. 755 kg/ha). Methane contributed the most to total GHG emissions: a mean of 85 % for L and LF and 67 % for CL and CLF. Consequently, L and LF had greater total GHG emissions (mean of 30 Mg CO2eq/ha/year). Over the four years, the system with the most negative net C balance (i.e., C storage) was LF when expressed per ha (-53.3 Mg CO2eq/ha), CLF when expressed per kg of carcass (-26 kg CO2eq/kg carcass), and LF when expressed per kg of human-edible protein (-72 kg CO2eq/kg human-edible protein). Even the L system can store C if well managed, leading to benefits such as increased meat as well as improved soil quality. Moreover, including crops and forestry in these livestock systems enhances these benefits, emphasizing the potential of integrated systems to offset GHG emissions.
Keywords: Agroecology; Agroforestry; Climate change; Ecosystem services; Grazing; Ruminants.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.