Understanding protein-protein interactions and formation of reversible oligomers (clusters) in concentrated monoclonal antibody (mAb) solutions is necessary for designing stable, low viscosity (η) concentrated formulations for processing and subcutaneous injection. Here we characterize the strength (K) of short-range anisotropic attractions (SRA) for 75-200 mg/mL mAb2 solutions at different pH and cosolute conditions by analyzing structure factors (Seff(q)) from small-angle X-ray scattering (SAXS) using coarse-grained molecular dynamics simulations. Best fit simulations additionally provide cluster size distributions, fractal dimensions, cluster occluded volume, and mAb coordination numbers. These equilibrium properties are utilized in a model to account for increases in viscosity caused by occluded volume in the clusters (packing effects) and dissipation of stress across lubricated fractal clusters. Seff(q) is highly sensitive to K at 75 mg/mL where mAbs can mutually align to form SRA contacts but becomes less sensitive at 200 mg/mL as steric repulsion due to packing becomes dominant. In contrast, η at 200 mg/mL is highly sensitive to SRA and the average cluster size from SAXS/simulation, which is observed to track the cluster relaxation time from shear thinning. By analyzing the distribution of sub-bead hot spots on the 3D mAb surface, we identify a strongly attractive hydrophobic patch in the complementarity determining region (CDR) at pH 4.5 that contributes to the high K and consequently large cluster sizes and high η. Adding NaCl screens electrostatic interactions and increases the impact of hydrophobic attraction on cluster size and raises η, whereas nonspecific binding of Arg attenuates all SRA, reducing η. The hydrophobic patch is absent at higher pH values, leading to smaller K, smaller clusters, and lower η. This work constitutes a first attempt to use SAXS and CG modeling to link both structural and rheological properties of concentrated mAb solutions to the energetics of specific hydrophobic patches on mAb surfaces. As such, our work opens an avenue for future research, including the possibility of designing coarse-grained models with physically meaningful interacting hot spots.
Keywords: high concentration; molecular dynamics; monoclonal antibodies; small angle X-ray scattering; viscosity.