The color of flowers is one of the main characteristics adopted for plants to attract pollinators to ensure the reproductive success of the plant, they are also important in their ornamental appeal in Narcissus plant. In this study, we identified a NtMYB12 locus encoding an R2R3-MYB transcription factor. Comparative transcriptome analysis of loss- and gain- of NtMYB12 tissue relative to wild-type narcissus showed NtMYB12 was mainly involved in flavonol and phenylpropanoid metabolic pathways. Biochemical evidences of dual-luciferase activity and chromatin immunoprecipitation assay supported that MYB12 directly bound to promoters of NtFLS, NtLAR, and NtDFR that were cloned by genome walking assay, and activated NtFLS and NtLAR expression but repressed NtDFR expression. More interestingly, NtMYB12 can interact with NtbHLH1 and NtWD40-1 proteins via R3 domain that were selected by transcriptome-based WGCNA and confirmed by yeast two hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assay. Interaction of NtMYB12 with NtbHLH1 and NtWD40-1 forming MYB-bHLH-WD40 triplex specially activated NtDFR and NtANS expression and promoted (pro)anthocyanin accumulation, while NtMYB12 alone activated NtFLS and NtLAR expression and accumulated flavonols, but repressed NtDFR expression. These results indicated that NtMYB12 alone or NtMYB12-bHLH1-WD40-1 triplex requires for competition of metabolism fluxes between flavonol and (pro)anthocyanin biosynthesis. NtMYB12 dually functions on flavonol and proanthocyanin biogenesis via physically binding to NtFLS and NtLAR promoter activating their expression and on (pro)anthocyanin biosynthesis via NtMYB12-NtWD40-NtbHLH (MBW) triplex activating NtDFR and NtANS expression. Requirement of NtMYB12 alone or MBW complex for the competition between flavonol and anthocyanin biosynthesis results in narcissus colorized petal traits.
Keywords: Flavonol biosynthesis; MBW triplex; Narcissus tazetta; NtMYB12; Proanthocyanin biosynthesis.
© 2023. The Author(s).