Red blood cells (RBC) transfusion is used to alleviate symptoms and prevent complications in anemic patients by restoring oxygen delivery to tissues. RBC transfusion efficacy, that can be measured by a rise in hemoglobin (Hb) concentration, is influenced by donor-, product-, and recipient-related characteristics. In some studies, severe pre-transfusion anemia is associated with a greater than expected Hb increment following transfusion but the biological mechanism underpinning this relationship remains poorly understood. We conducted a prospective study in critically ill patients and quantified Hb increment following one RBC transfusion. In a murine model, we investigated the possibility that, in conjunction with the host erythropoietic response, the persistence of transfused donor RBC is improved to maintain a highest RBC biomass. We confirmed a correlation between a greater Hb increment and a deeper pre-transfusion anemia in a cohort of 17 patients. In the mouse model, Hb increment and post-transfusion recovery were increased in anemic recipients. Post-transfusion RBC recovery was improved in hypoxic mice or those receiving an erythropoiesis-stimulating agent and decreased in those treated with erythropoietin (EPO)-neutralizing antibodies, suggesting that EPO signaling is necessary to observe this effect. Irradiated recipients also showed decreased post-transfusion RBC recovery. The EPO-induced post-transfusion RBC recovery improvement was abrogated in irradiated or in macrophage-depleted recipients, but maintained in splenectomized recipients, suggesting a mechanism requiring erythroid progenitors and macrophages, but which is not spleen-specific. Our study highlights a physiological role of EPO in downregulating post-transfusion RBC clearance, contributing to maintain a vital RBC biomass to rapidly cope with hypoxemia.
© 2023 The Authors. American Journal of Hematology published by Wiley Periodicals LLC.