Background: Despite clear evidence of nonlinear interactions in the molecular architecture of polygenic diseases, linear models have so far appeared optimal in genotype-to-phenotype modeling. A key bottleneck for such modeling is that genetic data intrinsically suffers from underdetermination ([Formula: see text]). Millions of variants are present in each individual while the collection of large, homogeneous cohorts is hindered by phenotype incidence, sequencing cost, and batch effects.
Results: We demonstrate that when we provide enough training data and control the complexity of nonlinear models, a neural network outperforms additive approaches in whole exome sequencing-based inflammatory bowel disease case-control prediction. To do so, we propose a biologically meaningful sparsified neural network architecture, providing empirical evidence for positive and negative epistatic effects present in the inflammatory bowel disease pathogenesis.
Conclusions: In this paper, we show that underdetermination is likely a major driver for the apparent optimality of additive modeling in clinical genetics today.
Keywords: Genome interpretation; Machine learning; Neural networks.
© 2023. BioMed Central Ltd., part of Springer Nature.