11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2) converts active 11β-hydroxyglucocorticoids to their inactive 11-keto forms, fine-tuning the activation of mineralocorticoid and glucocorticoid receptors. 11β-HSD2 is expressed in mineralocorticoid target tissues such as renal distal tubules and cortical collecting ducts, and distal colon, but also in placenta where it acts as a barrier to reduce the amount of maternal glucocorticoids that reach the fetus. Disruption of 11β-HSD2 activity by genetic defects or inhibitors causes the syndrome of apparent mineralocorticoid excess (AME), characterized by hypernatremia, hypokalemia and hypertension. Secondary hypertension due to 11β-HSD2 inhibition has been observed upon consumption of excessive amounts of licorice and in patients treated with the azole fungicides posaconazole and itraconazole. Furthermore, inhibition of 11β-HSD2 during pregnancy with elevated exposure of the fetus to cortisol can cause neurological complications with a lower intelligence quotient, higher odds of attention deficit and hyperactivity disorder as well as metabolic reprogramming with an increased risk of cardio-metabolic disease in adulthood. This chapter describes in vitro methods for the determination of 11β-HSD2 activity that can be applied to identify inhibitors that may cause secondary hypertension and characterize the enzyme's activity in disease models. The included decision tree and the list of methods with their advantages and disadvantages aim to enable the reader to select and apply an in vitro method suitable for the scientific question and the equipment available in the respective laboratory.
Keywords: 11β-Hydroxysteroid dehydrogenase; Activity assay; Apparent mineralocorticoid excess; Glucocorticoid; Hypertension; Hypokalemia; LC-MS/MS; Xenobiotics.
Copyright © 2023. Published by Elsevier Inc.