A radiocarbon spike at 14 300 cal yr BP in subfossil trees provides the impulse response function of the global carbon cycle during the Late Glacial

Philos Trans A Math Phys Eng Sci. 2023 Nov 27;381(2261):20220206. doi: 10.1098/rsta.2022.0206. Epub 2023 Oct 9.

Abstract

We present new 14C results measured on subfossil Scots Pines recovered in the eroded banks of the Drouzet watercourse in the Southern French Alps. About 400 new 14C ages have been analysed on 15 trees sampled at annual resolution. The resulting Δ14C record exhibits an abrupt spike occurring in a single year at 14 300-14 299 cal yr BP and a century-long event between 14 and 13.9 cal kyr BP. In order to identify the causes of these events, we compare the Drouzet Δ14C record with simulations of Δ14C based on the 10Be record in Greenland ice used as an input of a carbon cycle model. The correspondence with 10Be anomalies allows us to propose the 14.3 cal kyr BP event as a solar energetic particle event. By contrast, the 14 cal kyr BP event lasted about a century and is most probably a common Maunder-type solar minimum linked to the modulation of galactic cosmic particles by the heliomagnetic field. We also discuss and speculate about the synchroneity and the possible causes of the 14 cal kyr BP event with the brief cold phase called Older Dryas, which separates the Bølling and Allerød millennium-long warm phases of the Late Glacial period. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

Keywords: Miyake event; carbon cycle; dendrochronology; radiocarbon; solar energetic particles; solar variations.