DISTINCT METABOLIC STATES DIRECT RETINAL PIGMENT EPITHELIUM CELL FATE DECISIONS

bioRxiv [Preprint]. 2023 Sep 27:2023.09.26.559631. doi: 10.1101/2023.09.26.559631.

Abstract

During tissue regeneration, proliferation, dedifferentiation, and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis, and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine, or pyruvate are sufficient to support RPE reprogramming identifying glycolysis as a requisite. Conversely, the induction of oxidative metabolism by activation of pyruvate dehydrogenase induces Epithelial-to-mesenchymal transition (EMT), while simultaneously blocking the activation of neural retina fate. We also identify that EMT is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.

Publication types

  • Preprint