We use 1H and 17O NMR static field gradient diffusometry to measure self-diffusion coefficients of protons (DH) and oxygens (DO) in Nafion 212 with various hydration levels (λ = 4-18). For all samples and both nuclei, we obtain activation energies (Ea) of ≈0.19 eV. Analyzing the hydration-level dependence of DH and DO, we find DO/DH ≈ 1 at λ ≈ 18, resembling the situation in bulk water, while oxygen diffusion becomes faster than proton diffusion when the water content is decreased, leading to DO/DH ≈ 1.2 at λ ≈ 4. A comparison with literature data for acidic bulk solutions implies that faster oxygen than proton diffusion results from the existence of the polymer framework. To rationalize the observed ratios DO/DH ≥ 1, we consider a bimodal dynamical model in which the interactions of H+(H2O)m ions with neighboring SO3- groups lead to slower water dynamics in the vicinity of the polymer framework than in the center of the water nanochannels.