Mitochondrial Dysfunction and Decreased Cytochrome c in Cell and Animal Models of Machado-Joseph Disease

Cells. 2023 Oct 3;12(19):2397. doi: 10.3390/cells12192397.

Abstract

Mitochondrial dysfunction has been described in many neurodegenerative disorders; however, there is less information regarding mitochondrial deficits in Machado-Joseph disease (MJD), a polyglutamine (polyQ) disorder caused by CAG repeat expansion in the ATXN3 gene. In the present study, we characterized the changes in mitochondrial function and biogenesis markers in two MJD models, CMVMJD135 (MJD135) transgenic mice at a fully established phenotype stage and tetracycline-regulated PC6-3 Q108 cell line expressing mutant ataxin-3 (mATXN3). We detected mATXN3 in the mitochondrial fractions of PC6-3 Q108 cells, suggesting the interaction of expanded ATXN3 with the organelle. Interestingly, in both the cerebella of the MJD135 mouse model and in PC6-3 Q108 cells, we found decreased mitochondrial respiration, ATP production and mitochondrial membrane potential, strongly suggesting mitochondrial dysfunction in MJD. Also, in PC6-3 Q108 cells, an additional enhanced glycolytic flux was observed. Supporting the functional deficits observed in MJD mitochondria, MJD135 mouse cerebellum and PC6-3 Q108 cells showed reduced cytochrome c mRNA and protein levels. Overall, our findings show compromised mitochondrial function associated with decreased cytochrome c levels in both cell and animal models of MJD.

Keywords: Machado–Joseph disease; calcium handling; mitochondrial membrane potential; mitochondrial transcription; oxygen consumption.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytochromes c / metabolism
  • Disease Models, Animal
  • Machado-Joseph Disease* / genetics
  • Machado-Joseph Disease* / metabolism
  • Mice
  • Mice, Transgenic
  • Mitochondria / metabolism
  • Nerve Tissue Proteins / metabolism
  • Repressor Proteins / metabolism

Substances

  • Cytochromes c
  • Nerve Tissue Proteins
  • Repressor Proteins

Grants and funding

This work was financed by Regional Development Fund (ERDF) provided through the Centro 2020 Regional Operational Programme under project CENTRO-01-0145-FEDER000012-HealthyAging2020 and through COMPETE 2020—Operational Programme for Competitiveness and Internationalisation, and by Portuguese national funds via FCT—Fundação para a Ciência e a Tecnologia under projects UIDB/04539/2020, UIDP/04539/2020, LA/P/0058/ 2020, UIDB/50026/2020 and UIDP/50026/2020.