Mechanistic Insights into the Ligand-Directed Divergent Synthesis of 2-Benzazepine Derivatives via Ni-Catalyzed Tunable Cyclization/Cross-Coupling: A DFT Study

Inorg Chem. 2023 Oct 30;62(43):17946-17953. doi: 10.1021/acs.inorgchem.3c02853. Epub 2023 Oct 18.

Abstract

The detailed mechanisms of Ni-catalyzed ligand-controlled cyclization/cross-coupling of o-bromobenzenesulfonyl acrylamide (1a) with trifluoromethyl alkene were investigated by DFT calculations. The computational results support a single-electron reduction of NiII precatalyst to give BrNiIL species, which would react with 1a via oxidative addition to afford the (Ar)NiIIILBr2 complex. The subsequent cyclizations did not proceed until (Ar)NiIIILBr2 was reduced to the key (Ar)NiIL complex. For the bpy-involving reaction, the subsequent steps include nucleophilic attack to the carbonyl carbon atom, N-C bond breaking, intramolecular migratory insertion, as well as concerted C-C cross-coupling and β-F elimination. While the ligand of terpyridine promotes the 7-endocyclization followed by stepwise migratory insertion and β-F elimination to afford 2-benzazepine 2,5-dione. For both reactions, a theoretical study implied that the most favorable mechanism involved a NiI-NiIII-NiI catalytic cycle. The origins of the chemoselectivity, coupled with the factors responsible, were addressed.