Quantitative 177Lu SPECT/CT imaging for personalized dosimetry using a ring-shaped CZT-based camera

EJNMMI Phys. 2023 Oct 18;10(1):64. doi: 10.1186/s40658-023-00586-z.

Abstract

Background: Dosimetry after radiopharmaceutical therapy with 177Lu (177Lu-RPT) relies on quantitative SPECT/CT imaging, for which suitable reconstruction protocols are required. In this study, we characterized for the first time the quantitative performance of a ring-shaped CZT-based camera using two different reconstruction algorithms: an ordered subset expectation maximization (OSEM) and a block sequential regularized expectation maximization (BSREM) combined with noise reduction regularization. This study lays the foundations for the definition of a reconstruction protocol enabling accurate dosimetry for patients treated with 177Lu-RPT.

Methods: A series of 177Lu-filled phantoms were acquired on a StarGuide™ (GE HealthCare), with energy and scatter windows centred at 208 (± 6%) keV and 185 (± 5%) keV, respectively. Images were reconstructed with the manufacturer implementations of OSEM (GE-OSEM) and BSREM (Q.Clear) algorithms, and various combinations of iterations and subsets. Additionally, the manufacturer-recommended Q.Clear-based reconstruction protocol was evaluated. Quantification accuracy, measured as the difference between the SPECT-based and the radionuclide calibrator-based activity, and noise were evaluated in a large cylinder. Recovery coefficients (RCs) and spatial resolution were assessed in a NEMA IEC phantom with sphere inserts. The reconstruction protocols considered suitable for clinical applications were tested on a cohort of patients treated with [177Lu]Lu-PSMA-I&T.

Results: The accuracy of the activity from the cylinder, although affected by septal penetration, was < 10% for all reconstructions. Both algorithms featured improved spatial resolution and higher RCs with increasing updates at the cost of noise build-up, but Q.Clear outperformed GE-OSEM in reducing noise accumulation. When the reconstruction parameters were carefully selected, similar values for noise (~0.15), spatial resolution (~1 cm) and RCs were found, irrespective of the reconstruction algorithm. Analogue results were found in patients.

Conclusions: Accurate activity quantification is possible when imaging 177Lu with StarGuide™. However, the impact of septal penetration requires further investigations. GE-OSEM is a valid alternative to the recommended Q.Clear reconstruction algorithm, featuring comparable performances assessed on phantoms and patients.

Keywords: Block sequential regularized expectation maximization (BSREM); CZT digital detectors; Calibration; Dosimetry; Image reconstruction; Quantitative Lu-177 SPECT; SPECT/CT.