Hypoxia-driven protease legumain promotes immunosuppression in glioblastoma

Cell Rep Med. 2023 Nov 21;4(11):101238. doi: 10.1016/j.xcrm.2023.101238. Epub 2023 Oct 18.

Abstract

Glioblastoma (GBM) is a hypoxic and "immune-cold" tumor containing rich stromal signaling molecules and cell populations, such as proteases and immunosuppressive tumor-associated macrophages (TAMs). Here, we seek to profile and characterize the potential proteases that may contribute to GBM immunosuppression. Legumain (LGMN) emerges as the key protease that is highly enriched in TAMs and transcriptionally upregulated by hypoxia-inducible factor 1-alpha (HIF1α). Functionally, the increased LGMN promotes TAM immunosuppressive polarization via activating the GSK-3β-STAT3 signaling pathway. Inhibition of macrophage HIF1α and LGMN reduces TAM immunosuppressive polarization, impairs tumor progression, enhances CD8+ T cell-mediated anti-tumor immunity, and synergizes with anti-PD1 therapy in GBM mouse models. Thus, LGMN is a key molecular switch connecting two GBM hallmarks of hypoxia and immunosuppression, providing an actionable therapeutic intervention for this deadly disease.

Keywords: LGMN; glioblastoma; hypoxia; immunosuppression; immunotherapy; macrophages; protease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Glioblastoma* / drug therapy
  • Glioblastoma* / genetics
  • Glycogen Synthase Kinase 3 beta
  • Hypoxia
  • Immunosuppression Therapy
  • Mice
  • Peptide Hydrolases

Substances

  • asparaginylendopeptidase
  • Peptide Hydrolases
  • Glycogen Synthase Kinase 3 beta