Previous studies have showed that the permeability of blood brain barrier (BBB) increased after hypoxia ischemia (HI). The current research uncovered the mechanism of altered BBB permeability after hypoxic-ischemic brain damage (HIBD) through AKT/GSK-3β/CREB signaling pathway in neonatal rats. Firstly, Magnetic resonance imaging (MRI) combined with hematoxylin-eosin (H&E) staining was used to assess brain injury. Initial findings showed abnormal signals in T2-weighted imaging (T2WI) and diffusion weighted imaging (DWI). Changes also happened in the morphology of nerve cells. Subsequently, we found that BBB damage is manifested as leakage of immunoglobulin G (IgG) and destruction of BBB-related proteins and ultrastructure. Meanwhile, the levels of matrix metalloproteinase-9 (MMP-9) significantly increased at 24 h after HIBD compared to a series of time points. Additionally, immunohistochemical (IHC) staining combined with Western blot (WB) was used to verify the function of the AKT/GSK-3β/CREB signaling pathway in BBB damage after HI in neonatal rats. Results showed that less Claudin-5, ZO-1, p-AKT, p-GSK-3β and p-CREB, along with more MMP-9 protein expression were visible on the damaged side of the cerebral cortex in the HIBD group in contrast to the sham and HIBD + SC79 groups. Together, our findings demonstrated that HI in neonatal rats might upregulate the levels of MMP-9 protein and downregulate the levels of Claudin-5 and ZO-1 by inhibiting the AKT/GSK-3β/CREB pathway, thus disrupting the BBB, which in turn aggravates brain damage after HI in neonatal rats.
Keywords: AKT/GSK-3β/CREB pathway; Blood brain barrier; Hypoxic-ischemic brain damage; Neonatal rats.
Copyright © 2023 Elsevier B.V. All rights reserved.