Cobalt (Co) and Nickel (Ni) are increasingly found in our environment. We analysed their combined toxicity and uptake mechanisms in the early food chain by studying bacteria and the bacterivorous ciliate Paramecium as a primary consumer. We exposed both species to these metals to measure the toxicity, uptake and transfer of metals from bacteria to Paramecium. We found that Ni is more toxic than Co, and that toxicity increases for both metals when (i) food bacteria are absent and (ii) both metals are applied in combination. The cellular content in bacteria after exposure shows a concentration dependent bias for either Ni or Co. Comparing single treatment and joint exposure, bacteria show increased levels of both metals when these are both exposed. To imitate the basic level of the food chain, we fed these bacteria to paramecia. The cellular content shows a similar ratio of Nickel and Cobalt as in food bacteria. This is different to the direct application of both metals to paramecia, where Cobalt is enriched over Nickel. This indicates that bacteria can selectively pre-accumulate metals for introduction into the food chain. We also analysed the transcriptomic response of Paramecium to sublethal doses of Nickel and Cobalt to gain insight into their toxicity mechanisms. Gene ontology (GO) analysis indicates common deregulated pathways, such as ammonium transmembrane transport and ubiquitine-associated protein degradation. Many redox-related genes also show deregulation of gene expression, indicating cellular adaptation to increased RONS stress. This suggests that both metals may also target the same cellular pathways and this is consistent with the increased toxicity of both metals when used together. Our data reveal complex ecotoxicological pathways for these metals and highlights the different parameters for their fate in the ecosystem, in the food chain and their ecotoxicological risk after environmental contamination.
Keywords: Bacteria; Ciliate; Food chain; Joint toxicity; Metal induced toxicity; Transcriptomics.
Copyright © 2023 Elsevier Ltd. All rights reserved.