The exploration of multitarget molecules presents a promising avenue in the quest for effective therapeutic strategies against Alzheimer's disease (AD), a multifactorial neurodegenerative disorder. Traditional single-target drugs have shown limited success due to the complex interplay of pathological processes involved in AD. Multitarget-directed ligands (MTDLs), designed to interact with multiple targets simultaneously, offer a more holistic approach to address the multifaceted nature of neurodegenerative diseases. Recent studies have highlighted the potential of chalcones and huprine derivatives in mitigating amyloid-β peptide-associated toxicity and preserving membrane integrity, crucial for cellular homeostasis. The interaction of these compounds with lipid bilayers may modulate biological responses, opening a new realm of investigation in membrane-centric phenomena. This approach not only broadens the mechanistic understanding of bioactive compounds but also underscores the need for a paradigm shift in AD research, focusing on both intracellular targets and plasma membrane protection for more effective treatment strategies.
Keywords: Alzheimer’s disease; chalcones; huprine derivatives; lipid bilayer; multitarget molecules; plasma membrane.