Effects of a 20-Week High-Intensity Strength Training Program on Muscle Strength Gain and Cardiac Adaptation in Untrained Men: Preliminary Results of a Prospective Longitudinal Study

JMIR Form Res. 2023 Oct 24:7:e47876. doi: 10.2196/47876.

Abstract

Background: As strength sports gain popularity, there is a growing need to explore the impact of sustained strength training on cardiac biventricular structure and function, an area that has received less attention compared to the well-established physiological cardiac adaptation to endurance training.

Objective: This study aims to implement a 20-week high-intensity strength training program to enhance maximal muscle strength and evaluate its impact on cardiac biventricular adaptation in healthy, untrained men.

Methods: A total of 27 healthy and untrained young men (mean age 22.8, SD 3.2 years) participated in a strength training program designed to increase muscle strength. The training program involved concentric, eccentric, and isometric exercise phases, conducted over a consecutive 20-week time frame with a frequency of 3 weekly training sessions. Participants were evaluated before and after 12 and 20 weeks of training through body composition analysis (bioelectrical impedance), a 12-lead resting electrocardiogram, 3D transthoracic echocardiography, cardiopulmonary exercise testing, and muscle isokinetic dynamometry. The progression of strength training loads was guided by 1-repetition maximum (RM) testing during the training program.

Results: Of the initial cohort, 22 participants completed the study protocol. No injuries were reported. The BMI (mean 69.8, SD 10.8 kg/m² vs mean 72, SD 11 kg/m²; P=.72) and the fat mass (mean 15.3%, SD 7.5% vs mean 16.5%, SD 7%; P=.87) remained unchanged after training. The strength training program led to significant gains in 1-RM exercise testing as early as 4 weeks into training for leg extension (mean 69.6, SD 17.7 kg vs mean 96.5, SD 31 kg; P<.001), leg curl (mean 43.2, SD 9.7 kg vs mean 52.8, SD 13.4 kg; P<.001), inclined press (mean 174.1, SD 41.1 kg vs mean 229.2, SD 50.4 kg; P<.001), butterfly (mean 26.3, SD 6.2 kg vs mean 32.5, SD 6.6 kg; P<.001), and curl biceps on desk (mean 22.9, SD 5.2 kg vs mean 29.6, SD 5.2 kg; P<.001). After 20 weeks, the 1-RM leg curl, bench press, pullover, butterfly, leg extension, curl biceps on desk, and inclined press showed significant mean percentage gains of +40%, +41.1%, +50.3%, +63.5%, +80.1%, +105%, and +106%, respectively (P<.001). Additionally, the isokinetic evaluation confirmed increases in maximal strength for the biceps (+9.2 Nm), triceps (+11.6 Nm), quadriceps (+46.8 Nm), and hamstrings (+25.3 Nm). In this paper, only the training and muscular aspects are presented; the cardiac analysis will be addressed separately.

Conclusions: This study demonstrated that a short-term high-intensity strength training program was successful in achieving significant gains in muscle strength among previously untrained young men. We intend to use this protocol to gain a better understanding of the impact of high-intensity strength training on cardiac physiological remodeling, thereby providing new insights into the cardiac global response in strength athletes.

Trial registration: ClinicalTrials.gov NCT04187170; https://clinicaltrials.gov/study/NCT04187170.

Keywords: actimetry; athletes; athlete’s heart; echocardiography; exercise; isokinetic dynamometry; muscle strength gain; sports physiology; strength training; strengthening exercise; untrained population; weightlifting.

Associated data

  • ClinicalTrials.gov/NCT04187170