Background: Aortic stenosis (AS) is characterized by inflammation, fibrosis, osteogenesis and angiogenesis. Men and women develop these mechanisms differently. Galectin-3 (Gal-3) is a pro-inflammatory and pro-osteogenic lectin in AS. In this work, we aim to analyse a potential sex-differential role of Gal-3 in AS.
Methods: 226 patients (61.50% men) with severe AS undergoing surgical aortic valve (AV) replacement were recruited. In AVs, Gal-3 expression and its relationship with inflammatory, osteogenic and angiogenic markers was assessed. Valve interstitial cells (VICs) were primary cultured to perform in vitro experiments.
Results: Proteomic analysis revealed that intracellular Gal-3 was over-expressed in VICs of male AS patients. Gal-3 secretion was also higher in men's VICs as compared to women's. In human AVs, Gal-3 protein levels were significantly higher in men, with stronger immunostaining in VICs with myofibroblastic phenotype and valve endothelial cells. Gal-3 levels in AVs were positively correlated with inflammatory markers in both sexes. Gal-3 expression was also positively correlated with osteogenic markers mainly in men AVs, and with angiogenic molecules only in this sex. In vitro, Gal-3 treatment induced expression of inflammatory, osteogenic and angiogenic markers in male's VICs, while it only upregulated inflammatory and osteogenic molecules in women-derived cells. Gal-3 blockade with pharmacological inhibitors (modified citrus pectin and G3P-01) prevented the upregulation of inflammatory, osteogenic and angiogenic molecules.
Conclusions: Gal-3 plays a sex-differential role in the setting of AS, and it could be a new sex-specific therapeutic target controlling pathological features of AS in VICs.
Keywords: Angiogenesis; Aortic stenosis; Calcification; Galectin-3; Inflammation; Sex differences; Valve interstitial cell.
Aortic stenosis (AS) is a condition that affects the aortic valves (AVs) of the heart and leads to death if untreated. Males and females show clear differences in the onset of AS, both clinically and in valve deterioration. In this study we identified galectin-3 (Gal-3) as a molecule involved in the development of AS alterations with different effects in men and women. We analyzed AVs of 226 patients (139 male and 87 female) with severe AS who underwent surgical AV replacement to study the association of Gal-3 with markers of mechanisms related to AS, such as inflammation, calcification and blood vessels formation. We performed experiments in valvular interstitial cells (VICs) to evaluate the impact of Gal-3 in these cells and its potential use as a therapeutic target. Our results showed that Gal-3 was more expressed in AVs and VICs of men over women. In AVs, Gal-3 levels were associated with inflammatory markers either in male and female, while they correlated with osteogenic markers mainly in men and with angiogenic only in male. The treatment of VICs with Gal-3 produced increased levels of inflammatory and osteogenic molecules by cells of both sexes, but of angiogenic markers only in male’s. Pharmacological inhibition of Gal-3 prevented the increase of these pathological markers in VICs. Overall, our study indicates that Gal-3 is a molecule implicated in the setting of AS in a sex-differential way and its targeting may lead to a new sex-specific therapeutic option for AS treatment.
© 2023. Society for Women's Health Research and BioMed Central Ltd.