Background: Objective disease activity biomarkers are lacking in chronic inflammatory demyelinating polyneuropathy (CIDP), impacting treatment decisions in clinical care and outcomes in clinical trials. Using a proximity extension assay, we aimed to identify candidate serum protein biomarkers for disease activity in CIDP.
Method: We collected clinical data and serum of 106 patients with CIDP. Patients starting induction treatment (n=53) and patients on maintenance treatment starting treatment withdrawal (n=40) were assessed at baseline and at 6 months (or at relapse). Patients in remission (n=13) were assessed once. Clinical disease activity was defined based on improvement or deterioration by the minimal clinically important difference on the inflammatory Rasch-built Overall Disability Scale in combination with either grip strength or the Medical Research Council sum score. Using a proximity extension assay (Olink Explore platform), 1472 protein levels were analysed in serum. Candidate proteins were selected based on fold change>0.5 or <-0.5 and p<0.05 between clinically active and inactive disease. Longitudinal changes of candidate proteins between baseline and follow-up were analysed.
Results: We identified 48 candidate proteins that differed between clinically active and inactive disease on cross-sectional comparison. Five of these proteins (SUGT1, IRAK4, DCTN1, 5'-nucleotidase cytosolic IIIA (NT5C3A), glutaredoxin (GLRX)) also showed longitudinal changes consistent with disease activity changes. IRAK4 was also identified in a sensitivity analysis, using another definition for disease activity.
Conclusion: Our results indicate that IRAK4 and possibly SUGT1, DCTN1, NT5C3A and GLRX are candidate biomarkers for monitoring clinical disease activity in CIDP.
Keywords: CLINICAL NEUROLOGY; NEUROBIOLOGY; NEUROIMMUNOLOGY; NEUROPATHY.
© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.