Osteoarthritis (OA) is a degenerative disease. It is common in middle-aged and elderly people and is one of the main causes of disability. Currently, the etiology of OA is unclear, and no specific biomarkers for the diagnosis of OA have been identified. Therefore, finding a highly sensitive biomarker is essential for a proper diagnosis.TRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs) are newly discovered classes of noncoding RNAs. tRF has been proven in several studies to have significant associations with tumor diagnosis, making it a promising biomarker in cancer research. However, the diagnostic utility of tRF in OA patients and the correlation between OA progression and trf differential expression have yet to be elaborated. The purpose of this research was to identify tRFs with differential expression in OA to assess their potential as OA biomarkers. To determine the tRF-5022B expression level in this research, real-time fluorescence quantitative PCR has been employed. Agarose gel electrophoresis, Sanger sequencing, and other investigations have been employed for evaluating tRF-5022B's molecular properties. Receiver operating characteristic curve analysis has been utilized for assessing the diagnostic effectiveness of the tRF-5022B. The findings demonstrated that tRF-5022B expression was considerably lower in OA serum. The Kellgren-Lawrence grading scale was shown to correspond with serum expression levels. The ROC curve confirmed that tRF-5022B serum expression levels might differentiate OA cases from healthy individuals and RA patients. According to the aforementioned findings, tRF-5022B may be employed as a novel biomarker for OA diagnosis due to its excellent diagnostic value.
Keywords: Biomarker; Diagnosis; Osteoarthritis; tRF-5022B; tRNA-derived fragments.
© 2023. BioMed Central Ltd., part of Springer Nature.