Biodegradable gelatin (G) food packaging films are in increasing demand as the substitution of petroleum-based preservative materials. However, G packaging films universally suffer from weak hydrophobicity in practical applications. Constructing a hydrophobic micro/nanocoating with low surface energy is an effective countermeasure. However, the poor compatibility with the hydrophilic G substrate often leads to the weak interfacial adhesion and poor durability of the hydrophobic coating. To overcome this obstacle, we used (3-aminopropyl) triethoxysilane (APS) as an interfacial bridging agent to prepare a highly hydrophobic, versatile G nanocomposite film. Specifically, tannic acid (TA)-modified nanohydroxyapatite (n-HA) particles (THA) were introduced in G matrix (G-THA) to improve the mechanical properties. Micro/nanostructure with low surface energy composed of nanozinc oxide (Nano-ZnO)/APS/stearic acid (SA) (NAS) was constructed on the surface of G-THA film (G-THA/NAS) through one-step spray treatment. Consequently, as-prepared G-THA/NAS film presented excellent mechanics (tensile strength: 7.6 MPa, elongation at break: 292.7%), water resistance ability (water contact angle: 150.4°), high UV-shielding (0% transmittance at 200 nm), degradability (100% degradation rate after buried in the natural soil for 15 days), antioxidant (78.8% of 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and antimicrobial (inhibition zone against Escherichia coli: 15.0 mm and Staphylococcus aureus: 16.5 mm) properties. It should be emphasized that the bridging function of APS significantly improves the interfacial adhesion ability of the NAS coating with more than 95% remaining area after the cross-cut adhesion test. Meanwhile, the G-THA/NAS film could maintain stable and long-lasting hydrophobic surfaces against UV radiation, high temperature, and abrasion. Based on these multifunctional properties, the G-THA/NAS film was successfully applied as a liquid packaging material. To sum up, we provide a feasible and effective method to prepare high-performance green packaging films.
Keywords: (3-aminopropyl) triethoxysilane; gelatin; highly hydrophobic packaging film; nano-ZnO; nanohydroxyapatite; stearic acid.