Pancreatic islet-reactive B lymphocytes promote Type 1 diabetes (T1D) by presenting an antigen to islet-destructive T cells. Teplizumab, an anti-CD3 monoclonal, delays T1D onset in patients at risk, but additional therapies are needed to prevent the disease entirely. Therefore, bifunctional molecules were designed to selectively inhibit T1D-promoting anti-insulin B cells by conjugating a ligand for the B cell inhibitory receptor CD22 (i.e., CD22L) to insulin, which permit these molecules to concomitantly bind to anti-insulin B cell receptors (BCRs) and CD22. Two prototypes were synthesized: 2:2 insulin-CD22L conjugate on a 4-arm PEG backbone, and 1:1 insulin-CD22L direct conjugate. Transgenic mice (125TgSD) expressing anti-insulin BCRs provided cells for in vitro testing. Cells were cultured with constructs for 3 days, then assessed by flow cytometry. Duplicate wells with anti-CD40 simulated T cell help. A 2-insulin 4-arm PEG control caused robust proliferation and activation-induced CD86 upregulation. Anti-CD40 further boosted these effects. This may indicate that BCR-cross-linking occurs when antigens are tethered by the PEG backbone as soluble insulin alone has no effect. Addition of CD22L via the 2:2 insulin-CD22L conjugate restored B cell properties to that of controls without an additional beneficial effect. In contrast, the 1:1 insulin-CD22L direct conjugate significantly reduced anti-insulin B cell proliferation in the presence of anti-CD40. CD22L alone had no effect, and the constructs did not affect the WT B cells. Thus, multivalent antigen constructs tend to activate anti-insulin B cells, while monomeric antigen-CD22L conjugates reduce B cell activation in response to simulated T cell help and reduce pathogenic B cell numbers without harming normal cells. Therefore, monomeric antigen-CD22L conjugates warrant futher study and may be promising candidates for preclinical trials to prevent T1D without inducing immunodeficiency.