Surface states of topological materials provide extreme electronic states for unconventional superconducting states. CaAg1-xPdxP is an ideal candidate for a nodal-line Dirac semimetal with drumhead surface states and no additional bulk bands. Here, we report that CaAg1-xPdxP has surface states that exhibit unconventional superconductivity (SC) around 1.5 K. Extremely sharp magnetoresistance, tuned by surface-sensitive gating, determines the surface origin of the ultrahigh-mobility "electrons." The Pd-doping elevates the Fermi level towards the surface states, and as a result, the critical temperature (Tc) is increased up to 1.7 K from 1.2 K for undoped CaAgP. Furthermore, a soft point-contact study at the surface of Pd-doped CaAgP proved the emergence of unconventional SC on the surface. We observed the bell-shaped conductance spectra, a hallmark of the unconventional SC. Ultrahigh mobility carriers derived from the surface flat bands generate a new class of unconventional SC.
© 2023. The Author(s).