Purpose: PET-negative residual CT masses (PnRCMs) are usually dismissed as nonviable post-treatment lesions in non-Hodgkin lymphoma (NHL) patients showing complete metabolic response (CMR). We aimed to develop and validate computed tomography (CT)-based radiomics model of PET-negative residual CT mass (PnRCM) for predicting relapse-free survival (RFS) in NHL patients showing CMR.
Methods: A total of 224 patients who showed CMR after completing first-line chemotherapy for PET-avid NHL were recruited for model development. Patients with PnRCM were selected in accordance with the Lugano classification. Three-dimensional segmentation was done by two readers. Radiomic scores (RS) were constructed using features extracted using the Least-absolute shrinkage and selection operator analysis among radiomics features of PnRCMs showing more than substantial interobserver agreement (> 0.6). Cox regression analysis was performed with clinical and radiologic features. The performance of the model was evaluated using area under the curve (AUC). For validation, 153 patients from an outside hospital were recruited and analyzed in the same way.
Results: In the model development cohort, 68 (30.4%) patients had PnRCM. Kaplan-Meier analysis showed that patients with PnRCM had significantly (p = 0.005) shorter RFS than those without PnRCM. In Kaplan-Meier analysis, the high RS group showed significantly (p = 0.038) shorter RFS than the low-scoring group. Multivariate Cox regression analysis showed that high IPI score [hazard ratio (HR) 2.46; p = 0.02], treatment without rituximab (HR 3.821; p = 0.019) were factors associated with shorter RFS. In estimating RFS, combined model in both development and validation cohort showed AUC values of 0.81.
Conclusion: The combined model that incorporated both clinical parameters and CT-based RS showed good performance in predicting relapse in NHL patients with PnRCM.
Keywords: Chemotherapy; Non-Hodgkin lymphoma; Positron-emission tomography; Radiomics; Tomography, X-ray computed.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.