Differences in ventricular wall composition may explain inter-patient variability in the ECG response to variations in serum potassium and calcium

Front Physiol. 2023 Oct 11:14:1060919. doi: 10.3389/fphys.2023.1060919. eCollection 2023.

Abstract

Objective: Chronic kidney disease patients have a decreased ability to maintain normal electrolyte concentrations in their blood, which increases the risk for ventricular arrhythmias and sudden cardiac death. Non-invasive monitoring of serum potassium and calcium concentration, [K+] and [Ca2+], can help to prevent arrhythmias in these patients. Electrocardiogram (ECG) markers that significantly correlate with [K+] and [Ca2+] have been proposed, but these relations are highly variable between patients. We hypothesized that inter-individual differences in cell type distribution across the ventricular wall can help to explain this variability. Methods: A population of human heart-torso models were built with different proportions of endocardial, midmyocardial and epicardial cells. Propagation of ventricular electrical activity was described by a reaction-diffusion model, with modified Ten Tusscher-Panfilov dynamics. [K+] and [Ca2+] were varied individually and in combination. Twelve-lead ECGs were simulated and the width, amplitude and morphological variability of T waves and QRS complexes were quantified. Results were compared to measurements from 29 end-stage renal disease (ESRD) patients undergoing hemodialysis (HD). Results: Both simulations and patients data showed that most of the analyzed T wave and QRS complex markers correlated strongly with [K+] (absolute median Pearson correlation coefficients, r, ranging from 0.68 to 0.98) and [Ca2+] (ranging from 0.70 to 0.98). The same sign and similar magnitude of median r was observed in the simulations and the patients. Different cell type distributions in the ventricular wall led to variability in ECG markers that was accentuated at high [K+] and low [Ca2+], in agreement with the larger variability between patients measured at the onset of HD. The simulated ECG variability explained part of the measured inter-patient variability. Conclusion: Changes in ECG markers were similarly related to [K+] and [Ca2+] variations in our models and in the ESRD patients. The high inter-patient ECG variability may be explained by variations in cell type distribution across the ventricular wall, with high sensitivity to variations in the proportion of epicardial cells. Significance: Differences in ventricular wall composition help to explain inter-patient variability in ECG response to [K+] and [Ca2+]. This finding can be used to improve serum electrolyte monitoring in ESRD patients.

Keywords: ECG; QRS complex morphology; T wave morphology; calcium; heart-torso models; hemodialysis; potassium; transmural heterogeneity.

Grants and funding

This work was funded by the projects PID 2019-105674RB-I00, PID 2019-104881RB-I00, PID2022-140556OB-I00, and TED201-130459B-I00 (Ministerio de Ciencia e Innovación), ERC-StG 638284 (ERC), Marie Skłodowska-Curie grant 764738 (European Commission) and by European Social Fund (EU) and Aragón Government through project LMP94_21, LMP141_21, and BSICoS group T39_23R. MP was funded by the French National Research Agency, grant reference ANR-10-IAHU04-LIRYC. This work was granted access to the HPC resources of IDRIS under the allocation 2021-A0110307379 made by GENCI.