Hepatitis C virus (HCV) infection is a worldwide public health problem. Chronic infection with HCV can lead to liver cirrhosis or cancer. Although some immune-competent individuals can clear the virus, others develop chronic HCV disease due to viral mutations or an impaired immune response. IFNs type I and III and the signal transduction induced by them are essential for a proper antiviral effect. Research on the viral cycle and immune escape mechanisms has formed the basis of therapeutic strategies to achieve a sustained virological response (SVR). The first therapies were based on IFNα; then, IFNα plus ribavirin (IFN-RBV); and then, pegylated-IFNα-RBV (PEGIFNα-RIV) to improve cytokine pharmacokinetics. However, the maximum SVR was 60%, and several significant side effects were observed, decreasing patients' treatment adherence. The development of direct-acting antivirals (DAAs) significantly enhanced the SVR (>90%), and the compounds were able to inhibit HCV replication without significant side effects, even in paediatric populations. The management of coinfected HBV-HCV and HCV-HIV patients has also improved based on DAA and PEG-IFNα-RBV (HBV-HCV). CD4 cells are crucial for an effective antiviral response. The IFNλ3, IL28B, TNF-α, IL-10, TLR-3, and TLR-9 gene polymorphisms are involved in viral clearance, therapeutic responses, and hepatic pathologies. Future research should focus on searching for strategies to circumvent resistance-associated substitution (RAS) to DAAs, develop new therapeutic schemes for different medical conditions, including organ transplant, and develop vaccines for long-lasting cellular and humoral responses with cross-protection against different HCV genotypes. The goal is to minimise the probability of HCV infection, HCV chronicity and hepatic carcinoma.
Keywords: IFN therapy; antivirals; chronic HCV; hepatitis C virus; sustained virological response; vaccines.