Extrapyramidal side effects (EPS) can be induced by neuroleptics that regulate the expression of transcription factor FosB and dopaminergic mediator DARPP-32 in the striatum. However, the long-term neurobiological changes in striatal projection neurons resulting from a cumulative dosage of typical and atypical antipsychotics are poorly understood. The present study aimed to determine the differential and long-lasting changes in FosB distribution and DARPP-32 phosphorylation in the striatum and nucleus accumbens (NAc) associated with chronic antipsychotic-induced EPS. Male C57Bl/6J mice received daily injections of Olanzapine (Olz, 15 mg/kg), Clozapine (Clz, 20 mg/kg), or Haloperidol (Hal, 1 mg/kg), for a period of 11 weeks with a 4-day withdrawal period before the last dosage. Catalepsy for detection of EPS, along with open-field and rotarod tests, were assessed as behavioral correlates of motor responses. Additionally, FosB and phosphorylated-DARPP-32 immunohistochemistry were examined in striatal regions after treatment. All antipsychotics produced catalepsy and reduced open-field exploration, such as impaired rota-rod performance after Olz and Hal. The washout period was critical for Clz-induced side effects reduction. Both Olz and Clz increased FosB in NAc Shell-region, and phosphoThr34-DARPP-32 in NAc. Only Clz reduced phosphoThr75-DARPP-32 in the dorsal striatum and showed FosB/phosphoThr34-Darpp-32-ir in the NAc Core region. This study provides evidence that atypical antipsychotics such as Olz and Clz also give rise to EPS effects frequently associated with a cumulative dosage of typical neuroleptics such as Hal. Nevertheless, FosB/phosphoThr34-Darpp-32-ir in the NAc Core region is associated with hypokinetic movements inhibition.
Keywords: clozapine; haloperidol; hypokinetic movement disorders; olanzapine; phosphoThr75-Darpp-32; striatum.