Extracellular Vesicles and Bacteriophages: New Directions in Environmental Biocolloid Research

Environ Sci Technol. 2023 Nov 7;57(44):16728-16742. doi: 10.1021/acs.est.3c05041. Epub 2023 Oct 29.

Abstract

There is a long-standing appreciation among environmental engineers and scientists regarding the importance of biologically derived colloidal particles and their environmental fate. This interest has been recently renewed in considering bacteriophages and extracellular vesicles, which are each poised to offer engineers unique insights into fundamental aspects of environmental microbiology and novel approaches for engineering applications, including advances in wastewater treatment and sustainable agricultural practices. Challenges persist due to our limited understanding of interactions between these nanoscale particles with unique surface properties and their local environments. This review considers these biological particles through the lens of colloid science with attention given to their environmental impact and surface properties. We discuss methods developed for the study of inert (nonbiological) particle-particle interactions and the potential to use these to advance our understanding of the environmental fate and transport of extracellular vesicles and bacteriophages.

Keywords: Smoluchowski; aggregation; bacteriophages; biocolloids; deposition; environmental fate; extracellular vesicles; outer membrane vesicles.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteriophages*
  • Colloids
  • Environment
  • Extracellular Vesicles*

Substances

  • Colloids