People with dementia have an increase in brain inflammation, caused in part by innate and adaptive immune cells. However, it remains unknown whether dementia-associated diseases alter neuro-immune reflex arcs to impact the systemic immune system. We examined peripheral immune cells from a community-based cohort of older adults to test if systemic inflammatory cytokine signatures associated with early stages of cognitive impairment. Human peripheral blood mononuclear cells were cultured with monocyte or T-cell-targeted stimuli, and multiplex assays quantitated cytokines in the conditioned media. Following T-cell-targeted stimulation, cells from women with cognitive impairment produced lower amounts of TH17 cytokines compared with cells from cognitively healthy women, while myeloid-targeted stimuli elicited similar amounts of cytokines from cells of both groups. This TH17 signature correlated with the proportion of circulating CD4+ and CD8+ T cells and plasma glial fibrillary acidic protein and neurofilament light concentrations. These results suggest that decreases in TH17 cytokines could be an early systemic change in women at risk for developing dementia. Amelioration of TH17s cytokines in early cognitive impairment could, in part, explain the compromised ability of older adults to respond to vaccines or defend against infection.
Keywords: Alzheimer’s disease; biomarker; immunity; neuroimmunology; sex differences.
© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.