The effects of air quality control policies implemented in California from 2005 to 2019 targeting sources contributing to ambient PM2.5 concentrations, were assessed at two sampling sites in the Los Angeles Basin (N. Main Street and Rubidoux). The spatial and temporal variations of pollution source contributions obtained from dispersion-normalized positive matrix factorization, (DN-PMF) were interpreted with respect to site specific locations. Secondary nitrate and secondary sulfate were the major contributors to the ambient PM2.5 mass concentrations at both sites with substantial concentration decreases after 2008 that were likely due to the implementation of California specific programs including stricter NOx emissions control on motor vehicles. Biomass burning emissions also decreased over the study period at both sampling sites except for one event in December 2005 when strong winter storms and multiple floods led to unusually low atmospheric temperatures and likely increased residential wood burning. The large number of wildfires, trans-Pacific transport of mineral dust and regional dust transported by strong Santa Ana winds and agriculturally generated dust in Rubidoux contributed to poor air quality. Severe storms and devastating wildfires were also linked to the elevated pyrolyzed organic carbon (OP-rich) concentrations. The two distinct region-specific sources, describing fuel combustion in LA, were "residual oil" and "traffic", while separate "gasoline" and "diesel" vehicles sources were identified in Rubidoux. California emissions standards program which required replacement of conventional cars with electric or hybrid vehicles and standards for gasoline and diesel fuels, led to lower "traffic" contributions. Gasoline vehicle emissions after 2017 in Rubidoux also decreased. "Diesel" concentrations declined between 2007 and 2011 because of the recession from late 2007 to early 2009 and the Federal Heavy-Duty Diesel Rule.
Keywords: Accountability; Source apportionment; South coast air Basin; Trends.
Copyright © 2023 Elsevier Ltd. All rights reserved.