Strong Replaces Weak: Design of H-Bond Interactions Enables Cryogenic Aqueous Zn Metal Batteries

ACS Nano. 2023 Nov 14;17(21):21614-21625. doi: 10.1021/acsnano.3c06687. Epub 2023 Nov 2.

Abstract

Despite the numerous advantages of aqueous Zn batteries, their practical application under cryogenic conditions is hindered by the freezing of the electrolyte because the abundance of hydrogen bonds (H-bonds) between H2O molecules drives the aqueous system to transform to an orderly frozen structure. Here, a design of H-bond interactions based on the guiding ideology of "strong replaces weak" is proposed. The strong H-bonds formed between introduced eutectic components and water molecules break down the weak H-bonds in the original water molecule network, which contributes to an ultralow freezing point and a high ionic conductivity of 1.7 mS cm-1 at -40 °C. Based on multiperspective theoretical simulations and tailor-made in situ cooling Raman characterizations, it has been demonstrated that substituting weak H-bonds with strong H-bonds facilitates the structural reshaping of Zn2+ solvation and remodeling of the H-bond network in the electrolyte. Endowed with this advantage, reversible and stable Zn plating/stripping behaviors could be realized at -40 °C, and the full cells display a high discharge capacity (200 mA h g-1) at -40 °C with ∼75% capacity retention after 1000 cycles. This study will expand the design philosophy of antifreezing aqueous electrolytes and provide a perspective to promote the adoption of Zn metal batteries for cryogenic environment large-scale energy storage.

Keywords: H-bond interactions; aqueous Zn batteries; cryogenic condition; eutectic components; in situ cooling characterization.