We analyzed total mercury content (THg) and carbon (δ13C) and nitrogen (δ15N) stable isotope ratios in fish, subtidal macrobenthos, and particulate organic matter (POM) as a proxy for pelagic phytoplankton and attached microalgae as a proxy for microphytobenthos to investigate the mercury exposure pathway in fish. For four seasons, samples of the above-mentioned organisms were collected on five occasions (July and October 2018 and January, April, and July 2019) in Minamata Bay. Isotope analysis showed that Minamata Bay food web structures were almost entirely fueled by microphytobenthos. The THg values of the fish and macrobenthos species were positively correlated with their δ13C. This indicates that their diets, which were highly fueled by microphytobenthos, led to high THg bioaccumulation in both macrobenthos and fish. The feeding habits of fishes differ depending on the species, and they prey on organisms of many taxa, including fish (mainly Japanese anchovy), crabs, shrimp, copepods, annelids, and algae. Fish species that preyed on benthic crustaceans had high THg. These results suggest that the main pathway of Hg bioaccumulation in fish from Minamata Bay is the benthic food chain, which is primarily linked to benthic crustaceans fueled by microphytobenthos.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.