Metabolic dependencies of metastasis-initiating cells in female breast cancer

Nat Commun. 2023 Nov 4;14(1):7076. doi: 10.1038/s41467-023-42748-8.

Abstract

Understanding the mechanisms that enable cancer cells to metastasize is essential in preventing cancer progression. Here we examine the metabolic adaptations of metastasis-initiating cells (MICs) in female breast cancer and how those shape their metastatic phenotype. We find that endogenous MICs depend on the oxidative tricarboxylic acid cycle and fatty acid usage. Sorting tumor cells based upon solely mitochondrial membrane potential or lipid storage is sufficient at identifying MICs. We further identify that mitochondrially-generated citrate is exported to the cytoplasm to yield acetyl-CoA, and this is crucial to maintaining heightened levels of H3K27ac in MICs. Blocking acetyl-CoA generating pathways or H3K27ac-specific epigenetic writers and readers reduces expression of epithelial-to-mesenchymal related genes, MIC frequency, and metastatic potential. Exogenous supplementation of a short chain carboxylic acid, acetate, increases MIC frequency and metastasis. In patient cohorts, we observe that higher expression of oxidative phosphorylation related genes is associated with reduced distant relapse-free survival. These data demonstrate that MICs specifically and precisely alter their metabolism to efficiently colonize distant organs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetyl Coenzyme A / metabolism
  • Breast Neoplasms* / pathology
  • Citric Acid Cycle
  • Female
  • Humans
  • Neoplasm Recurrence, Local
  • Oxidative Phosphorylation

Substances

  • Acetyl Coenzyme A