Microbial communities across activated sludge plants show recurring species-level seasonal patterns

ISME Commun. 2022 Feb 18;2(1):18. doi: 10.1038/s43705-022-00098-4.

Abstract

Microbial communities in activated sludge (AS) are the core of sanitation in wastewater treatment plants (WWTPs). Microbial communities in AS have shown seasonal changes, however, long-term experiments (>2 years) are rarely conducted, limiting our understanding of the true seasonal dynamics in WWTPs. In this study, we resolved the microbial seasonal dynamics at the species level in four municipal full-scale WWTPs, sampled every 7-10 days, during 3-5 consecutive years. By applying a new time-series analysis approach, we revealed that the seasonal pattern was species-specific, where species belonging to the same functional guild or genus may show different seasonal dynamics. Species could be grouped into cohorts according to their seasonal patterns, where seasonal cohorts showed repeatable annual dynamics across years and plants. Species were also grouped according to their net growth rate in the AS (i.e., growing species and disappearing species). Growing species were more prevailing in spring and autumn cohorts, while disappearing species, which were only present due to the continuous immigration from influent wastewater, were mostly associated with winter and spring cohorts. Most known process-critical species, such as nitrifiers, polyphosphate accumulating organisms and filamentous organisms, showed distinct species-specific patterns. Overall, our study showed that overarching seasonal patterns affected microbial species in full-scale AS plants, with similar seasonal patterns across plants for many dominant species. These recurrent seasonal variations should be taken into account in the operation, understanding and management of the WWTPs.